

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

- * 1820- Kerner discovered a poison in rotting meat
- * Muller (1870): described Botulism.
 - * Botulus = Sausages (Latin)

Pharmacology- What is Botulinum Toxin

- * 1820- Kerner discovered a poison in rotting meat
- * Muller (1870): described Botulism.
 - * Botulus = Sausages (Latin)
- * 1949 Botulinum Toxin isolated and mode of action identified
- * Neurotoxin protein produced by Clostridum botulinum (Gram +ve Anaerobe)

Pharmacology- What is Botulinum Toxin

- * 1820- Kerner discovered a poison in rotting meat
- * Muller (1870): described Botulism.
- * Botulus = Sausages (Latin)
- * 1949 Botulinum Toxin isolated and mode of action identified

Pharmacology- What is Botulinum Toxin

- * 1820- Kerner discovered a poison in rotting meat
- * Muller (1870): described Botulism.
 - * Botulus = Sausages (Latin)
- * 1949 Botulinum Toxin isolated and mode of action identified
- * Neurotoxin protein produced by Clostridum botulinum (Gram +ve Anaerobe)
- * The deadliest naturally occurring substance known to man

Pharmacology- What is Botulinum Toxin

- * 1820- Kerner discovered a poison in rotting meat
- * Muller (1870): described Botulism.
- * Botulus = Sausages (Latin)
- * 1949 Botulinum Toxin isolated and mode of action identified
- * Neurotoxin protein produced by Clostridum botulinum (Gram +ve Anaerobe)
- * The deadliest naturally occurring substance known to man
- * Biological weapon used in WW1

Pharmacology- What is Botulinum Toxin

- * 1820- Kerner discovered a poison in rotting meat
- * Muller (1870): described Botulism.
 - * Botulus = Sausages (Latin)
- * 1949 Botulinum Toxin isolated and mode of action identified
- * Neurotoxin protein produced by Clostridum botulinum (Gram +ve Anaerobe)
- * The deadliest naturally occurring substance known to man
- * Biological weapon used in WW1
- * 2002: ?WMD in Iraq war

* 1973 Alan Scott

* Ophthalmologist San Francisco

- * 1973 Alan Scott
 - * Ophthalmologist San Francisco
 - * Simon Kettlewell Eye Research Institute California

- * 1973 Alan Scott
 - * Ophthalmologist San Francisco
 - * Simon Kettlewell Eye Research Institute California
 - * Injected EOMs for strabismus

History: Role of Ophthalmologists

- * 1973 Alan Scott
 - * Ophthalmologist San Francisco
 - * Simon Kettlewell Eye Research Institute California
 - * Injected EOMs for strabismus
 - * then orbicularis for blepharospasm
 - * approached Allergan to gain regulatory approval

History: Role of Ophthalmologists

- * 1973 Alan Scott
 - * Ophthalmologist San Francisco
 - * Simon Kettlewell Eye Research Institute California
 - * Injected EOMs for strabismus
 - * then orbicularis for blepharospasm

- * 1973 Alan Scott
 - * Ophthalmologist San Francisco
 - * Simon Kettlewell Eye Research Institute California
 - * Injected EOMs for strabismus
 - * then orbicularis for blepharospasm
 - * approached Allergan to gain regulatory approval
 - * Botox released 1988 for blepharospasm

- * Alistair (Dermatologist) and Jean (Ophthalmologist) Carruthers in Vancouver
 - * Jean treating blepharospasm

History: Role of Ophthalmologists

* Alistair (Dermatologist) and Jean (Ophthalmologist) Carruthers in Vancouver

- * Alistair (Dermatologist) and Jean (Ophthalmologist) Carruthers in Vancouver
 - * Jean treating blepharospasm
 - * Alistair noticed cosmetic side effects

- * Alistair (Dermatologist) and Jean (Ophthalmologist) Carruthers in Vancouver
 - * Jean treating blepharospasm
 - * Alistair noticed cosmetic side effects
 - * FDA trials for cosmetic use

History: Role of Ophthalmologists

- * Alistair (Dermatologist) and Jean (Ophthalmologist) Carruthers in Vancouver
 - * Jean treating blepharospasm
 - * Alistair noticed cosmetic side effects
 - * FDA trials for cosmetic use
 - * 2002- Botox approved for glabellar folds
 - * 2007- 4.3 million treatments in USA

- * Alistair (Dermatologist) and Jean (Ophthalmologist) Carruthers in Vancouver
 - * Jean treating blepharospasm
 - * Alistair noticed cosmetic side effects
 - * FDA trials for cosmetic use
 - * 2002- Botox approved for glabellar folds

Different Preparations			
	Botox (Allergan)/ Vistabel/ Botox Cosmetic	Dysport (Ipsen)	Xeomin (Merz)
Storage	< 8°C	< 8°C	< 25°C
Shelf Life	24 months	15 months	36 months
Cl. Botulinum Strain	Hall A	Ipsen	Hall A
Biological Activity	100 MU-A/ vial (LD50 for humans 3000 MU-A)	500 MU- I/vial	100 MU-M/ vial
Biological Strength Relative to Botox	I	1/3- 2/5	I
Molecular Weight of BoNT component	900 kD	900 kD	150 kD (pure neurotoxin) ? less neutralising antibody formation
			formation

- * Equally effective 6/52 post reconstitution if refrigerated ¹
- * Equally effective 6/12 post reconstitution if frozen²

1 - Hexeel DM. Multicenter, double-blind study of the efficacy of injections with botulinum toxin type A reconstituted up to six consecutive weeks before application.[Demnatol Surg. 2004] 2. Parse a Reconstituted botulinum type A neurotoxin: clinical efficacy after long-term freezing before use Aesthetic Plast Surg. 2007 Mar-Apr;31(2): 98-90.

Dilution Strengths

- * What concentration of product?
- * Higher concentrations

Dilution Strengths

- * What concentration of product?
- * Higher concentrations
 - * less volume, less pain
- * Weaker concentrations
 - * better dosage control, can give minute amounts to pretarsal

Dilution Strengths

- * What concentration of product?
- * Higher concentrations
 - * less volume, less pain
- * Weaker concentrations

Dilution Strengths

- * What concentration of product?
- * Higher concentrations
 - * less volume, less pain
- * Weaker concentrations
 - * better dosage control, can give minute amounts to pretarsal
 - * ? more volume= greater spread

Dilution Strengths

* Botox: 2-5mls 0.9% saline in 1 vial (100 units)
* 2mls: 5u/0.1 ml 2.5mls: 4u/0.1 ml 4mls: 2.5u/0.1ml

Dilution Strengths

* Botox: 2-5mls 0.9% saline in 1 vial (100 units)
* 2mls: 5u/0.1 ml 2.5mls: 4u/0.1 ml 4mls: 2.5u/0.1ml
* Dysport: 2.5mls in 1 vial (500 units)- 20 units in 0.1 mls

Dilution Strengths

- * Botox: 2-5mls 0.9% saline in 1 vial (100 units)
- * 2mls: 5u/0.1 ml 2.5mls: 4u/0.1 ml 4mls: 2.5u/0.1ml
- * Dysport: 2.5mls in 1 vial (500 units)- 20 units in 0.1 mls
- * Fudge factor: 1 u Botox= 2.5-4 U Dysport

Pre-Injection Anaesthesia

- * Usually none
- * EMLA
- * Pinch technique
- * Post Injection Ice

<text><list-item><list-item><list-item><list-item><list-item>

Injection Techniques

- * Most injections targeting superficial muscles of SMAS
- * Standard: Subdermal e.g. 0.05-0.1ml
- * Microinjections: Subdermal/ Intradermal e.g. 0.01-0.02ml
 - * Less spread
 - * Less collateral paralysis

<section-header><text><text>

Dosages and Injection Frequency

Dosages and Injection Frequency

- * Dosage dependent:
 - * on target muscle size
 - * on target muscle activity

<section-header>

<section-header><section-header>

Dosages and Injection

* Dosage dependent:

* on target muscle size

* on target muscle activity* if adjacent muscles to avoid

Dosages and Injection Frequency

- * Frontalis: low risk, large muscle- high dose (5U per injection site)
- * Orbital Orbicularis
 - * Lateral fibres safe, moderate muscle size: 2.5U per injection site
 - * Lower Fibres: high risk of collateral paralysis- moderate dose 2.5U in microinjections
- * Pretarsal Orbicularis- small, high risk low dose (1-2U per injection site)

Dosages and Injection Frequency

* Dosage determines:

* Severity of paralysis in targeted muscle

Dosages and Injection Frequency

* Dosage determines:

- * Severity of paralysis in targeted muscle
- * Duration of paralysis in targeted muscle
- * Individualise for patient: Start low, titrate up, document well

Dosages and Injection Frequency

* Dosage determines:

- * Severity of paralysis in targeted muscle
- * Duration of paralysis in targeted muscle

Dosages and Injection Frequency

* Dosage determines:

- * Severity of paralysis in targeted muscle
- * Duration of paralysis in targeted muscle
- * Individualise for patient: Start low, titrate up, document well
- * Personalise for yourself

* Counsel: Kinetic vs. Hyperkinetic vs. Hypertonic patients

Complications

- * Most complications due to BoNT-A are short-lived and temporary
- * Most due to incorrect injection site/dosage:

Complications

- * Most complications due to BoNT-A are short-lived and temporary
- * Most due to incorrect injection site/dosage:
 - * unwanted collateral paralysis e.g. ptosis, diplopia, mouth drooping

Complications

- * Most complications due to BoNT-A are short-lived and temporary
- * Most due to incorrect injection site/dosage:
 - * unwanted collateral paralysis e.g. ptosis, diplopia, mouth drooping
 - * Overdosage e.g. brow ptosis
 - * collateral damage e.g. haemorrhage

Complications

- * Most complications due to BoNT-A are short-lived and temporary
- * Most due to incorrect injection site/dosage:
 - * unwanted collateral paralysis e.g. ptosis, diplopia, mouth drooping
 - * Overdosage e.g. brow ptosis

Functional Uses

- * Paralytic Lagophthalmos
- * Spastic lower lid entropion

<section-header><section-header>

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header>

Functional Uses

- * Paralytic Lagophthalmos
- * Spastic lower lid entropion
- * Blepharospasm
- * Hemifacial Spasm
- * Post Facial Nerve Aberrant movements e.g. Marin Amat Syndrome
- * Apraxia of Eyelid Opening

Functional Uses

- * Paralytic Lagophthalmos
- * Spastic lower lid entropion
- * Blepharospasm
- * Hemifacial Spasm
- * Post Facial Nerve Aberrant movements e.g. Marin Amat Syndrome

Functional Uses

- * Paralytic Lagophthalmos
- * Spastic lower lid entropion
- * Blepharospasm
- * Hemifacial Spasm
- * Post Facial Nerve Aberrant movements e.g. Marin Amat Syndrome
- * Apraxia of Eyelid Opening
- * Orbicularis Myokymia

Functional Uses

- * Paralytic Lagophthalmos
- * Spastic lower lid entropion
- * Blepharospasm
- * Hemifacial Spasm
- * Post Facial Nerve Aberrant movements e.g. Marin Amat Syndrome
- * Apraxia of Eyelid Opening
- * Orbicularis Myokymia
- * Crocodile Tears/ Functional Epiphora

Paralytic Lagophthalmos

- High risk facial nerve palsy- (dry eye, reduced corneal sensation, poor Bell's, severe lagophthalmos)
- * Corneal protection
- * Target: levator palpebrae superioris
- * Avoid: Orbicularis and Superior Rectus
- * 5-10U Botox into preaponeurotic space (deep)
- * Problems: Unable to reverse

Spastic Entropion

- * Temporary till surgery
- * Target: Preseptal and pretarsal orbicularis
 - * Reduce Override

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><table-row><table-container>

Cosmetic Uses

- * Dynamic/Mimic vs. Static Rhytides
- * Vital in cosmetic armamentarium
 - * Standalone
 - * Adjunctive to other techniques e.g. fillers, surgery
 - * Patients expect you to be able to offer
- * Fun, easy to learn & perform

Cosmetic Uses

- * Dynamic/Mimic vs. Static Rhytides
- * Vital in cosmetic armamentarium
 - * Standalone
 - * Adjunctive to other techniques e.g. fillers, surgery
 - * Patients expect you to be able to offer

Cosmetic Uses

- * Dynamic/Mimic vs. Static Rhytides
- * Vital in cosmetic armamentarium
 - * Standalone
 - * Adjunctive to other techniques e.g. fillers, surgery
 - * Patients expect you to be able to offer
- * Fun, easy to learn & perform
- * Medical Indemnity

Books

Procedures in Cosmetic Dermatology Series: Botulinum Toxin: Text with DVD: Cosmetic and Medical Uses (Procedures in Cosmetic Dermatology) by Alastair Carruthers, Jean Carruthers Price: £89.29

Botulinum Toxin in Facial Rejuvenation by Kate Coleman-Moriarty Price: £53.19

Using Botulinum Toxins Cosmetically: A Practical Guide by Jean Carruthers, Alastair Carruthers Price: £164.99

Botulinum Toxin in Aesthetic Medicine by Mauricio De Maio, Berthold Rzany Price: £58.43 Botulinum Toxin Injection Guide by Ib R. Odderson Price: £19.14

Courses KT Training Course www.kttraining.co.uk

Botoxtrainingcourse.co.uk

Contact Details

* mrdavidcheung@mac.com

* www.mrdavidcheung.com